2. Spectroscopy¶
Curie has two classes for analyzing high-purity germanium (HPGe) data, the Spectrum class, which performs peak fitting, and the Calibration class, which generates an energy, efficiency and resolution calibration which are needed to accurately fit peaks and determine activities. See the Curie API for more details on the methods and attributes of these classes.
Examples:
sp = ci.Spectrum('eu_calib_7cm.Spe')
sp.isotopes = ['152EU']
sp.isotopes = ['152EU', '40K']
sp.fit_peaks(gammas=[{'energy':1460.8, 'intensity':10.66, 'unc_intensity':0.55}])
sp.fit_peaks(gammas=ci.Isotope('40K').gammas(istp_col=True))
sp.summarize()
sp.saveas('test_spec.csv')
sp.saveas('test_spec.db')
sp.saveas('test_spec.json')
sp.plot()
cb = ci.Calibration()
cb.calibrate([sp], [{'isotope':'152EU', 'A0':3.7E4, 'ref_date':'01/01/2016 12:00:00'}])
cb.plot()
cb.saveas('calib.json')
sp.saveas('test_spec.json')
cb = ci.Calibration()
print(cb.engcal)
print(cb.eng(np.arange(10)))
cb.engcal = [0.1, 0.2, 0.003]
print(cb.eng(np.arange(10)))
cb = ci.Calibration()
print(cb.effcal)
print(cb.unc_effcal)
print(cb.eff(50*np.arange(1,10)))
print(cb.unc_eff(50*np.arange(1,10)))
cb = ci.Calibration()
print(cb.rescal)
print(cb.res(100*np.arange(1,10)))
cb = ci.Calibration()
print(cb.engcal)
print(cb.map_channel(300))
print(cb.eng(cb.map_channel(300)))
sp = ci.Spectrum('eu_calib_7cm.Spe')
sp.isotopes = ['152EU']
cb = ci.Calibration()
cb.calibrate([sp], sources=[{'isotope':'152EU', 'A0':3.5E4, 'ref_date':'01/01/2009 12:00:00'}])
cb.plot_engcal()
cb.plot_rescal()
cb.plot_effcal()
cb.plot()
sp = ci.Spectrum('eu_calib_7cm.Spe')
print(sp.attenuation_correction(['Fe', ci.Compound('H2O', density=1.0)], x=[0.1, 0.5])(100*np.arange(1,10)))
print(sp.attenuation_correction(['La', ci.Compound('Kapton', density=12.0)], ad=[0.1, 0.5])(100*np.arange(1,10)))
sp = ci.Spectrum('eu_calib_7cm.Spe')
print(sp.geometry_correction(distance=4, r_det=5, thickness=0.1, sample_size=2, shape='square'))
print(sp.geometry_correction(distance=30, r_det=5, thickness=10, sample_size=1))
print(sp.geometry_correction(distance=4, r_det=5, thickness=0.1, sample_size=(2,1.5), shape='rectangle'))
sp = ci.Spectrum('eu_calib_7cm.Spe')
print(sp.cb.engcal)
sp.cb.engcal = [0.3, 0.184]
sp.isotopes = ['152EU']
sp.plot()
sp = ci.Spectrum('eu_calib_7cm.Spe')
sp.cb.engcal = [0.3, 0.1835]
sp.isotopes = ['152EU']
sp.auto_calibrate()
print(sp.cb.engcal)
sp.plot()
sp = ci.Spectrum('eu_calib_7cm.Spe')
sp.cb.engcal = [0.3, 0.1]
sp.isotopes = ['152EU']
sp.auto_calibrate(peaks=[[664, 121.8]])
print(sp.cb.engcal)
sp.plot()
sp = ci.Spectrum('eu_calib_7cm.Spe')
sp.cb.engcal = [0.3, 0.1]
sp.isotopes = ['152EU']
sp.auto_calibrate(guess=[0.3, 0.1835])
print(sp.cb.engcal)
sp.plot()
sp = ci.Spectrum('eu_calib_7cm.Spe')
sp.isotopes = ['152EU']
sp.plot()
sp.plot(xcalib=False)
sp.plot(style='poster')
sp.summarize()
sp.saveas('test_plot.png')
sp.saveas('eu_calib.Chn')
sp.saveas('peak_data.csv')
print(sp.fit_peaks(SNR_min=5, dE_511=12))
print(sp.fit_peaks(bg='quadratic'))