.. _plotter: ======== Plotting ======== .. autofunction:: curie.colormap .. autofunction:: curie.set_style Class Plotting Method ===================== The following classes have plotting methods callable with the `cls.plot()` function, where `cls` is an instance of the appropriate class: * Calibration * Spectrum * DecayChain * Reaction * Stack All `cls.plot()` methods have no required arguments, and while some have specific optional arguments that are documented in the respective classes, all plotting methods share the same optional **keyword arguments**, denoted in the code by `**kwargs`. **f** : `matplotlib.pyplot figure` If figure *and* axes are supplied, then plot will be drawn *on top* of those axes. **ax** : `matplotlib.pyplot axes` If figure *and* axes are supplied, then plot will be drawn *on top* of those axes. **scale** : `str` Can specify the scale for the x and y axes with the following options: * `log` or `logy` : Set *only* y-scale to log * `logx` : Set *only* x-scale to log * `lin`, `liny` or `linear` : Set *only* y-scale to linear * `linx` : Set *only* x-scale to linear * `linlin` : x-scale *and* y-scale linear * `loglog` : x-scale *and* y-scale log * `linlog` : linear x-scale and log y-scale * `loglin` : log x-scale and linear y-scale **show** : `bool` Whether or not to show the figure using the matplotlib GUI. **saveas** : `str` Full filename for saving the figure in one of the matplotlib supported filetypes. **return_plot** : `bool` If `True`, then a tuple of (fig, axes) will be returned when calling the `cls.plot()` method. This can be used to draw multiple plots over each other, e.g. for plotting multiple cross-sections. **style**, **palette** and **shade** are also available as keyword arguments, and have the same behavior as in `curie.set_style()`.